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Up to now, many endohedral fullerenes (fullerenes with atoms
encapsulated inside hollow carbon cages) have been prepared and
isolated.1,2 Control of motion of atoms within a cage is expected
to be very valuable in designing functional molecular devices with
new electronic or magnetic properties.3,4 In 1997, we reported the
three-dimensional random motion of two La atoms in La2@C80.5

If the electrostatic potential inside the cage can be changed, it is
possible to control the motion of encapsulated metal atoms. In this
context, one plausible way may be to attach a molecule on the outer
surface of the cage.6 So far, no experimental evidence for
manipulation of the motion of “untouchable” metal atoms inside
the fullerene cage has been reported. We report here for the first
time that the circular motion of metal atoms inside the fullerene
cage is controllable by exohedral chemical functionalization. This
helps in designing and regulating novel supramolecules with new
electronic and structural properties, which encapsulates atoms or a
molecule inside the spheroidal architecture cage.

The first isolation of Ce2@C80 was reported by Yang and co-
workers in 1996.7 It is suggested that each Ce atom in Ce2@C80

donates three valence electrons to the carbon cage, providing a
stable closed-shell electronic structure on C80, as in the case of
La2@C80. However, the structural determination of Ce2@C80 has
not been carried out yet. Therefore, we first measured the13C NMR
spectrum of Ce2@C80 to determine its structure in CS2 at 298 K.
The13C NMR spectrum shows only two signals at 148.6 and 124.7
ppm with a 3:1 intensity ratio, respectively. This suggests that two
Ce atoms circulate freely inside theIh symmetrical C80 cage, as do
two La atoms in La2@C80.5

Recently, we have found that the three-dimensional random
motion of two La atoms in La2@C80 could be restricted to the
circular motion in a plane by attaching an electron-donating
molecule, such as disilirane, on the outer surface of the C80 cage.8

To see how electronic properties can be changed by attaching an
electron-donating molecule, density functional calculations have
been carried out for La2@C80(H2Si)2CH2. It was calculated that a
considerable charge transfer takes place from the disilirane part to
La2@C80, giving an electronic structure described as (La2@C80)-0.9-
((H2Si)2CH2)+0.9.

A toluene solution of Ce2@C80 and 1,1,2,2-tetrakis(2,4,6-tri-
methylphenyl)-1,2-disilirane was heated at 80°C for 4 h toafford

the silylated adduct1 (Scheme 1), which can be readily isolated
by the preparative HPLC. The formation of1 was confirmed by
mass spectroscopic measurement. Mass spectrometry of1 displays
a parent peak atm/z 1786 as well as a peak for Ce2@C80 at m/z
1240 that arises by the loss of the disilirane part from1. The
structure of1 was fully determined by1H, 13C, ROESY, and HMBC
NMR spectroscopic and X-ray crystallographic analyses.

The vis-near-IR absorption spectrum of1 in toluene shows an
absorption maximum at 819 nm, whereas that of Ce2@C80 exhibits
a featureless absorption. Such a large difference in the absorption
spectrum between pristine Ce2@C80 and1 is ascribed to the change
of the electronic structure of the cage, which is caused by the
electron donation from the silyl substituent to the cage. The
electronic property of1 has been clarified by cyclic (CV) and
differential pulse voltammetry (DPV) measurement in 1,2-dichlo-
robenzene using (n-Bu)4NPF6 as a supporting electrolyte. As
compared to Ce2@C80, both oxidation and reduction potentials of
1 were cathodically shifted to 640 and 340 mV, respectively. This
result reveals that silylation is strongly effective for electron
donation from the substituent to the cage.

The 1H NMR spectrum of1 shows two sets of 11 signals in a
6:1 ratio at 193 K. The change of its ratio upon increasing the
temperature suggests that each set of signals originates from two
conformers (the major (1-A) and minor (1-B) conformers).9 The
ROESY NMR measurement has been carried out to analyze an
interconversion between1-A and1-B in more detail.9 The exchange
cross-peaks between1-A and 1-B were observed in methyl,
methylene, and meta-protons at temperatures ranging from 293 to
233 K. These exchange cross-peaks corresponding to an intercon-
version between1-A and1-B entirely disappeared at 193 K, which
suggests that the chemical exchange is slower than the NMR time
scale (mixing time) 200 ms). This result suggests that the
interconversion between1-A and1-B is derived from the confor-
mational change of the disilirane part. The13C NMR spectrum of
1-A at 283 K shows a total of 59 signals involving 40 signals for
the C80 skeleton.

A total of 12 signals derived from four tertiary and eight
quaternary aromatic carbon atoms, six methyl carbon atoms, and
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one signal for the methylene carbon atoms of the disilirane part
were also observed. The HMBC NMR spectrum shows one cross-
peak corresponding to the methylene proton and one sp3 carbon
atom of C80, also indicating that1-A hasC2 symmetry. On the
other hand, the relative intensity of1-B was too small to observe
the 13C signals.

The X-ray crystal structure of1 shows two kinds of conformers
as disorder derived from the disilirane part, which correspond to
1-A and1-B found by1H NMR spectrum.10 Figure 1 shows only
the major conformer (1-A) for clarity. It is noteworthy that two Ce
atoms now stand still at two positions at the equator of1-A.11

To clarify the motion of two Ce atoms in solution,13C NMR
spectral analysis was carried out by varying temperatures.12 It is
noteworthy that only six signals out of a total of 5913C signals
are highly shifted by decreasing temperatures from 303 to 253 K,
as shown in Figure 2. This can be explained only with the fact
that each Ce atom is directed toward a hexagonal ring at the equator

of the C80 cage, as found in the X-ray crystal structure, because
the signals of the sp3 carbon atoms at the two poles are not
significantly shifted by the paramagnetic effects of thef-electron
on Ce.12

In conclusion, an exohedrally functionalized derivative (1) of
Ce2@C80 was successfully synthesized and fully characterized. The
X-ray crystallographic and NMR spectroscopic analyses reveal that
the free random motion of two Ce atoms in Ce2@C80 is fixed at
specific positions by exohedral chemical functionalization. It is
noteworthy that attachment of a silicon substituent can regulate the
position of metal atoms under the equator inside the carbon cage.
This is the first experimental evidence for control of the motion of
encapsulated atoms inside the fullerene cage. One may expect that
chemical functionalization can settle the position of metal atoms
under the equator or at the pole-to-pole plane inside the cage. Such
control of the motion of metal atoms by chemical functionalization
is expected to be of great help in designing novel molecular devices
with new electronic or magnetic properties.
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Figure 1. (a) Side view and (b) top view of the ORTEP drawings of1-A
at 90 K. Thermal ellipsoids are shown at 50% probability level. The CS2

molecules are omitted for clarity.

Figure 2. (a) 13C NMR spectra of1 at 253-303 K and (b) the temperature
dependence forT-2. Carbon signal lines in order of chemical shifts at 298
K. The red arrows show the carbon signals that are strongly affected by
paramagnetic effect.
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